
EtherCAT Device Protocol

Specification: www.ethercat.org/etg<spec.number (4 digits)> Knowledge Base: www.ethercat.org/kb Developers Forum: www.ethercat.org/forum

CoE Process dataTerminologyESM

Frame processing and examples

DC unit and synchronization

SM and FMMU

Su
bD

ev
ic

e

OD Area OD Index Range
Communication index area 0x1000 – 0x1FFF

RxPDO Mapping 0x1600 – 0x17FF

TxPDO Mapping 0x1A00 – 0x1BFF

RxPDO Assignment 0x1C12

TxPDO Assignment 0x1C13

Modules index area 0x6000 – 0xAFFF

Input area 0x6000 – 0x6FFF

Output area 0x7000 – 0x7FFF

Device index area 0xF000 – 0xFFFF

SDO Command
Specifier

SDO Services
0x02: SDO Request 0x03: SDO Response 0x08: SDO Info

0x00 Download Segmented Upload Segmented

0x01 Download Download Segmented Get OD List Req.

0x02 Upload Upload Get OD List Resp.

0x03 Upload Segmented Download Get Object Description Req.

0x04 Abort Transfer Get Object Description Resp.

0x05 Get Entry Description Req.

0x06 Get Entry Description Resp.

0x07 SDO Info Error Req.

Phys. start
address

Length Direction,
Buffer No.

SM0 SM1 SM2* SM3*

0x0800 0x0802 0x0804 Out, 1-buffer

0x0808 0x080A 0x080C In, 1-buffer

0x0810 0x0812 0x0814 Out, 3-buffer

0x0818 0x081A 0x081C In, 3-buffer

Index Data Type Index Data Type Index Data Type Index Data Type
0x0001 BOOL/BIT 0x0006 UINT 0x000B ARRAY of UINT 0x001F WORD

0x0002 SINT 0x0007 UDINT 0x0011 LREAL 0x0020 DWORD

0x0003 INT 0x0008 REAL 0x0015 LINT 0x0260 ARRAY of INT

0x0004 DINT 0x0009 STRING(n) 0x001B ULINT 0x0261 ARRAY of SINT

0x0005 USINT 0x000A ARRAY of BYTE 0x001E BYTE 0x0262 ARRAY of DINT

Object Dictionary Module 0 Module 1 … Module n
Communication area (0x1000 – 0x1FFF)

e.g. object 0x1000, 0x1018, 0x10F3

RxPDOs (0x1600 – 0x17FF) 0x1600 0x1601 ... 0x16nn

TxPDOs (0x1A00 – 0x1BFF) 0x1A00 0x1A01 ... 0x1Ann

Manufacturer specific area (0x2000 – 0x5FFF)

Input area (0x6000 – 0x6FFF) 0x6000 – 0x600F 0x6010 – 0x601F ... 0x6nn0 – 0x6nnF

Tx-mappable, read-only

Output area (0x7000 – 0x7FFF) 0x7000 – 0x700F 0x7010 – 0x701F ... 0x7nn0 – 0x7nnF

Rx-mappable, read-writeable

Configuration area (0x8000 – 0x8FFF) 0x8000 – 0x800F 0x8010 – 0x801F ... 0x8nn0 – 0x8nnF

read-writeable, usually not mappable

Information area (0x9000 – 0x9FFF) 0x9000 – 0x900F 0x9010 – 0x901F ... 0x9nn0 – 0x9nnF

read-only, usually not mappable

Diagnosis area (0xA000 – 0xAFFF) 0xA000 – 0xA00F 0xA010 – 0xA01F ... 0xAnn0 – 0xAnnF

Device area (0xF000 – 0xFFFF)

e.g. object 0xF000, 0xF010, 0xF030, 0xF050

Specifier Cmd Description
0x00 NOP No operation
0x01 APRD Auto increment physical read
0x02 APWR Auto increment physical write
0x03 APRW Auto increment physical read write
0x04 FPRD Configured address physical read
0x05 FPWR Configured address physical write
0x06 FPRW Configured address physical read write
0x07 BRD Broadcast read
0x08 BWR Broadcast write
0x09 BRW Broadcast read write
0x0A LRD Logical memory read
0x0B LWR Logical memory write
0x0C LRW Logical memory read write
0x0D ARMW Auto increment physical read multiple write
0x0E FRMW Configured address physical read multiple write

Command Action Increment
xRD Successful read +1

xWR Successful write +1

xRW Successful read
Successful write

+1
+2

In
fo

 (1
28

 B
yt

es
)

ESC Configuration
Configured Station Alias
CRC

Identity
Vendor ID
Product Code
Revision Number
Serial Number

Hardware Delays
Bootstrap MBX SM Configuration
Standard MBX SM Configuration

Ca
te

go
rie

s

Strings
General
FMMU
SM
RxPDO
TxPDO
DC
...

Register
Port

0 1 2 3

DL Control reg0x0100 – 0x0103

DL Status reg0x0110 – 0x0111

Frame Error Counter reg0x0300 reg0x0302 reg0x0304 reg0x0306

Phys. Error Counter reg0x0301 reg0x0303 reg0x0305 reg0x0307

Link Lost Counter reg0x0310 reg0x0311 reg0x0312 reg0x0313

EtherCAT State Machine (ESM)

The EtherCAT State Machine defines a step-by-step set-up of each individual
EtherCAT SubDevice and indicates available functionalities. A device can reject
a state request from the MainDevice and signal an error with an error indica-
tion (error flag in AL Status register) and a related error code (AL Status Code
register). The state request, state response and error response is exchanged
via the ESC AL Control register (reg0x0120), AL Status register (reg0x0130) and
AL Status Code register (reg0x0134). The ESM specifies the SubDevice behavior,
while the MainDevice adopts it respectively. The ESM description below
outlines the basic actions for each state transition: commands sent by the
MainDevice and (local) behavior of the connected devices.

Process data configuration

The EtherCAT process data configuration allows very flexible PDO description. PDO configuration can be either fixed, selectable or configurable. When using MDP objects,
inputs (obj0x6000 – 0x6FFF) and outputs (obj0x7000 – 0x7FFF) are mapped to PDO Mapping objects (obj0x1600 – 0x17FF for RxPDO Mapping and obj0x1A00 – 0x1BFF for
TxPDO Mapping) and assigned to the respective SM via obj0x1C12 (SM2) and obj0x1C13 (SM3) for PDO Assignment. PDO Mapping and PDO Assignment objects are used by
complex devices (with online and offline OD) as well as by simple devices (only in the EtherCAT SubDevice Information file).

Communication principle

EtherCAT communication is always initiated by the MainDevice by sending frames via its Ethernet interface. Those are processed on the fly by the ESC. Processing within the ESC works
in a “roundabout” fashion: Behind the EtherCAT Processing Unit (EPU) the frame is forwarded to the next port (and, if open, sent out to be processed by other SubDevices), while the
returning frame is sent back to the MainDevice via port 0. Port 0 shall always be the IN port of the SubDevice. The topology always forms a logical ring, and neither frame collision nor
congestion can occur by design. Throughput time can be calculated precisely, and errors can be detected easily via status and error counter registers (reg0x0100, reg0x0300 – 0x0313).

Reference:	 ETG.1000.4 – Frame processing principles

M
ai

nD
ev

ic
e

RxPDO Assigment
obj0x1C12 RxPDO Mapping

obj0x1600 ff.

RxPDOs
obj0x7000 ff. Download

Request

MBoxOut
Write

Outputs

TxPDO Assigment
obj0x1C13 TxPDO Mapping

obj0x1A00 ff.

TxPDOs
obj0x6000 ff. Upload

Response

MBoxIn

Out

In Inputs
Read

SubDevice structure and EtherCAT SubDevice Controller (ESC)

The ESC processes the EtherCAT frames on the fly in hardware and implements the functionalities of the data link layer (DLL). Those include SyncManagers (SM),
Fieldbus Memory Management Units (FMMU) and DC unit. Typically, EtherCAT SubDevices implement the application layer (AL) functionalities such as the ESM,
parameter handling and process data handling on a μC – such SubDevices are called “complex device”. Only for very simple I/O devices without parameters and
without necessary AL error handling, the I/O hardware drivers are connected directly to the digital I/O interface of the ESC – such SubDevices are called “simple device”.
The block diagram combines elements of the SubDevice’s hardware structure, functional entities of the ESC, software structure and protocol elements.

Modular Device Profile (MDP)

The MDP provides a basic structure for any EtherCAT SubDevice to organize physical or logical
modules within the device, based on the CoE OD. The SubDevice’s data is grouped based on its
physical structure and/or logical/software structure. The MDP structure is based on so-called
modules. A module has an assigned index range, typically:

	 1 RxPDO, 1 TxPDO (PdoIncrement = 1)
	 16 objects (with up to 255 entries per object) per functional index area (inputs, outputs,

	 configuration, information, diagnosis) (IndexIncrement = 16).
Information which is not specific for a module is organized in the 0xFxxx Device index area.

CoE Object Dictionary structure, incl. MDP structure

General OD structure, MDP structure (0x6000 ff.) and attributes of the functional index areas:

Reference:	 ETG.5001 – MDP Device model

MDP Device

Profiles

The major part of profiles is based on the CoE OD (incl. range 0x6000 ff.), while there are
MDP-based profiles and the IEC61800 drive profiles (incl. “DS402”). The 32-bit profile number
is provided by the SubDevice via Obj0x1000, Obj0xF010 and via ESI element Device:Profile
or Module:Profile. Bit 0-15 is the device profile number (e.g. 5003 for Semi Device Profile).
Bit 16-31 is the module profile number (e.g. 2020 Mass Flow Controller). Important profiles are:

	 ETG.5001.1 – General MDP Device Model Specification:
	 Basic structure for any EtherCAT SubDevice

	 ETG.5001.3 – MDP Fieldbus Gateway Profile Specification:
	 Incl. profiles for EtherCAT MainDevices, Profibus DP, CAN, CANopen, DeviceNet

	 ETG.5001.4 – MDP Safety Module Specification:
	 Incl. profiles for FSoE Digital I/O connection, FSoE Safety Drive Profile, FSoE MainDevice

	 ETG.5003 – Semi Device Profile:
	 Based on MDP structures, incl. profiles for mass flow controllers, temperature controllers,
	 pressure gauges, valves, chillers, pumps, RF DC generators

	 ETG.6010 – Implementation Directive for CiA402 Drive Profile (IEC61800-7-201)

Distributed Clocks (DC) and synchronization

Synchronization of MainDevice and SubDevice applications is based on a com-
mon time in the network (DC System Time). The synchronization modes define
how this common time is used to synchronize the local applications. The SYNC/
LATCH unit is used to generate SYNC/LATCH events based on the System Time.

DC System Time

The System Time is a 64-bit ns-based time starting 01.01.2000, 0:00h, or a 32-bit
time respectively. After setting up the DC time, MainDevice and SubDevices
share the same time base. The first DC SubDevice behind the MainDevice is
used as the reference clock. Each SubDevice has a local copy of the System Time
stored in reg0x0910.

Re
fe

re
nc

es
:	

ET
G

.10
0

0
.5

 –
 A

R
(A

pp
lic

at
io

n
Re

la
tio

ns
hi

p)
	

ET
G

.10
0

0
.4

 –
 A

tt
rib

ut
es

	
ET

G
.10

0
0

.6
 –

 A
L s

ta
te

 m
ac

hi
ne

	
ET

G
.2

0
0

0
 –

 In
fo

Ty
pe

PRE-OPERATIONAL (reg0x0120/reg0x0130 = 0x2): Mailbox communication available

SAFE-OPERATIONAL (reg0x0120/reg0x0130 = 0x4): Process data available, outputs still in safe state

OPERATIONAL (reg0x0120/reg0x0130 = 0x8): Input and output process data available

State transition/default timeout: PreopTimeout (3000ms) BackToSafeopTimeout (200ms)SafeopOPTimeout (10000ms) BackTolnitTimeout (5000ms)

INIT (reg0x0120/reg0x0130 = 0x1): Only access to ESC registers

MainDevice
Clear:	 Configuration registers, e.g.:	
	 FMMUs	 (reg0x0600 – 0x06FF)
	 SyncManagers (SM)	 (reg0x0800 – 0x087F)
Set:	 Fixed Physical Address	 (reg0x0010)
	 SM0 for Mailbox Out	 (reg0x0800 – 0x0807)
	 SM1 for Mailbox In	 (reg0x0808 – 0x080F)
If DC:	 DC System Time setup:
	 Delay compensation	 (reg0x0900, reg0x0928)
	 Offset compensation	 (reg0x0918, reg0x0920)
	 Static drift compensation (~15.000 times)	 (reg0x0910)

SubDevice
Verify:	 Mailbox SyncManager settings
Start:	 Mailbox communication (START_MBX_HANDLER)
Confirm:	 State request to PRE-OPERATIONAL

MainDevice
Set:	 Configuration objects via SDO, e.g.:	
	 RxPDO / TxPDO Assignment	 (obj0x1C12 / obj0x1C13)
	 RxPDO / TxPDO Mapping	 (reg0x1A00 – 0x1BFF / reg0x1600 – 0x17FF)
	 SM2 for outputs	 (reg0x0810 – 0x0817)
	 SM3 for inputs	 (reg0x0818 – 0x081F)
	 FMMU0 (maps outputs)	 (reg0x0600 – 0x060F)
	 FMMU1 (maps inputs)	 (reg0x0610 – 0x061F)
If DC:	 Configure SYNC/LATCH unit:
	 Set SYNC cycle time 	 (reg0x09A0 – 0x09A7)
	 Set DC start time 	 (reg0x0990 – 0x0997)
	 Set DC SYNC OUT unit 	 (reg0x0980 – 0x0981)
	 Set DC LATCH IN unit 	 (reg0x09A8 – 0x09A9)
	 Start continuous drift compensation	 (reg0x0910 – 0x0917)
Start:	 Cyclic process data

SubDevice
Verify:	 Process data SyncManager settings, PDO Mapping/Assignment
Start:	 Input update (START_INPUT_HANDLER)
Provide:	 Valid Inputs
Confirm:	 State request to SAFE-OPERATIONAL

MainDevice
Provide: 	 Valid outputs

SubDevice
Verify:	 Synchronization with DC, if required
Start:	 Output update (START_OUTPUT_HANDLER)
Confirm:	 State request to OPERATIONAL

MainDevice
Clear:	 SM0 for Mailbox Out	 (reg0x0800 – 0x0807)
	 SM1 for Mailbox In	 (reg0x0808 – 0x080F)
				

SubDevice
Stop:	 Mailbox communication (STOP_MBX_HANDLER)

MainDevice
Clear:	 SM2 for outputs	 (reg0x0810 – 0x0817)
	 SM3 for inputs	 (reg0x0818 – 0x081F)
	 FMMU0 (maps outputs)	 (reg0x0600 – 0x060F)
	 FMMU1 (maps inputs)	 (reg0x0610 – 0x061F)
Disable:	 Distributed Clocks	 (reg0x0980)

SubDevice
Stop:	 Cyclic process data

SubDevice
Stop:	 Output update (STOP_OUTPUT_HANDLER)

Datagram example 2: Mailbox communication, CoE SDO Service (via SM0, SM1)

In this example an SDO Download Request is written to SM0 Mailbox Out and the response/abort is read from SM1 Mailbox In: A value is
successfully downloaded to the configuration object obj0x8000:01 in case 1 and an abort is returned in case 2 with Abort Code 0x06090031
“Value of parameter written too high”.

M
ai

nD
ev

ic
e

Datagram SubDevice address
1001 (ADP0x03E9)

Not OK

OK

Re
fe

re
nc

e:
	

ET
G

.10
0

0
.4

 –
 E

th
er

CA
T

fr
am

e
st

ru
ct

ur
e

	
ET

G
.10

0
0

.6
 –

 S
D

O

Type Service Specifier Index SI Data

SdoRes()

SdoRes()

MBX_Main()

MailboxServiceInd()

COE_ServiceInd()

SDOS_Sdolnd()

OBJ_Read()

0x0001

Upload Request

FPWR 0x0000CoE Req. Upload obj0x8000 0x01ADP0x03E9 | ADO0x1000

0x0001CoE Resp. Upload obj0x8000 0x01

Case 1:	 Upload Response

FPRD 0x0000ADP0x03E9 | ADO0x1080

Command processed by ESC

processed by µC

WKCAddress (position | offset)

0x0001CoE Req. Abort obj0x8000 0x01 0x6090031

FPRD 0x0000ADP0x03E9 | ADO0x1080

Case 2:	 Abort Transfer

Datagram example 1: read/write access to register

In this example ESM register 0x0120, 0x0130, 0x0134 are written and read for state machine interactions.

M
ai

nD
ev

ic
e

Datagram

Command

FPWR

Value

0x02

WKC

0x0000

0x0001

0x0001

0x0001

State request to PREOP

FPRD

FPRD

0x02, 0x0000

0x11, 0x0016

0x0000

0x0000

Address (position | offset)

ADP0x03E9 | ADO0x0120

ADP0x03E9 | ADO0x0130

ADP0x03E9 | ADO0x0130

Re
fe

re
nc

e:
	

ET
G

.10
0

0
.6

 –
 P

ro
to

co
l S

ta
te

 M
ac

hi
ne

Case 1:	 Successful state change

Case 2:	 Rejected state change

ESC µC

SubDevice (ADP0x03E9)

0x01

0x02
Req. PREOP

0x02

0x01
INIT state

0x02
PREOP state

0x11
INIT state,

Error indication

0x0000
No error

0x0000
No error

0x0016
Invalid mailbox
configuration Not OK

Ch
ec

k
M

BX
 S

M
 se

tt
in

gs

Ch
ec

k
M

BX
 S

M
 se

tt
in

gs

OK

AL Control
reg0x0120

AL Status
reg0x0130

AL Status Code
reg0x0134

Synchronization modes

Applications may require different degrees of synchronization which is reflected by the different
EtherCAT synchronization modes. The basic operation for DC modes is setup via reg0x0980 – 0x0981.
Additional information is provided by the SyncManager Parameter objects obj0x1C32 for SM2 and
obj0x1C33 for SM3 (incl. minimum cycle time, calc and copy time, error counters).

CoE Object Dictionary (OD)

The OD is based on CANopen® and provides a structure for any EtherCAT device.
Each object is addressed by a 16-bit index and can have up to 255 object entries,
addressed by an 8-bit subindex (SI). The following Object Codes are distinguished:

	 VARIABLE:	 Sl0 only
	 ARRAY*:	 all entries have the same data type and name except SI0
	 RECORD*:	 entries may have different data types and names

*SI0 defines the highest supported subindex. SI1 always has a 16-bit offset.

CoE base data types (excerpt)

Reference:	 ETG.1020 – Base Data Types

CoE SDO (Service Data Object) services

Request Response

Upload Upload

Download Download

Info Info

Abort

OD List OD List

Object Desc. Object Desc.

Entry Desc. Entry Desc.

M
ai

nD
ev

ic
e

Su
bD

ev
ic

e

Reference:	 ETG.1000.5 – CoE service specification | ETG.1000.6 – CoE coding

SDO services are used to read from and write to the online OD of the SubDevice in a confirmed
fashion. They are also used to read the OD structure. The MainDevice sends an SDO request,
the SubDevice sends either an SDO Response or an SDO Abort. The following SDO Request/
Response services are defined:

	 SDO Upload:			 read object/object entry from online OD
	 SDO Download:		 write object/object entry from online OD
	 Get OD List:			 returns all object indexes of the online OD
	 Get Object Description:	 returns object name/code, data type and max. number of entries
	 Get Entry Description:	 returns value info, data type, bit length, access rights of an entry

References:	 ETG.1000.5 – Process data interaction | ETG.1000.6 – Object Dictionary | ETG.5001.1 – PDO Mapping and PDO Assign

Example: PDO Mapping and PDO Assignment

This example shows a fixed output mapping. The input mapping is selectable; either mapping A or B can be sassigned to SM3 via obj0x1C13

Outputs (SM2)

Mapping A Mapping B

Inputs (SM3)

Fixed mapping

obj0x1C12:1 obj0x1C13:1

obj0x1600: SI 1 to 5 obj0x1A00: SI 1 to 4 obj0x1A01: SI 1 to 2

obj0x7000:1	 Cycle count
obj0x7000:2	 Control Ch.1
obj0x7000:3	 Sample Ch.1
obj0x7000:4	 Control Ch.2
obj0x7000:5	 Sample Ch.2

obj0x6000:1	 Status Ch.1
obj0x6000:2	 Sample Ch.1
obj0x6000:3	 Time stamp Ch.1

obj0x6000:1	 Status Ch.1
obj0x6000:2	 Sample Ch.1

Minimum Cycle Time

SM access
read outputs

Process
outputs

Activate
outputs

Mailbox
service

...
Latch

inputs
Process
inputs

SM access
write inputs

Reference:	 ETG.1020 – Synchronization Reference:	 ETG.1020 – Synchronization | ETG.2000 – DC

μC

Interrupt SM2/3 event SM2/3 eventSYNC0 SYNC0

SM-Synchronous
µs-jitter

DC-Synchronous with SYNC0
ns-jitter

DC-Synchronous with SM2 and SYNC0
ns-jitter

Free Run
Local Clock

Frames Frame Frame

Application Application

ApplicationApplication

Application Application
activate outputs

Frame jitter

activate outputs

Application Application Application Application

SyncManager (SM)

SMs coordinate access to the ESC memory from both sides, EtherCAT and
PDI. This ensures data consistency. In case of mailbox communication
it ensures that mailbox messages are not overwritten (1-buffer mode).
In case of process data communication it ensures that process data can
always be written to the memory by EtherCAT and can always be read by
PDI side and vice versa (3-buffer mode). SyncManager 2/3 length is equal
to the Rx/TxPDO length so that buffers internally are swapped once data
was completely written/read.

Reference:	 ETG.1000.4 – SyncManager

Register Mailbox

*physical memory = 3 times Rx/TxPDO length

Process data

Fieldbus Memory Managment Unit (FMMU)

Typically, logical commands (LRD, LWR, LRW) are used for process data exchange: A single Lxx command addresses one or multiple SubDevices. The FMMUs of the
individual SubDevices are configured during start-up to map the data from the EtherCAT command (logical address space) to the physical memory and vice versa.
FMMUs are configured via registers starting at reg0x0600, see also example 3.
Reference:	 ETG.1000.4 – Fieldbus memory management unit

References:	 ETG.1000.4 – EtherCAT frame structure | ETG.1000.6 – CoE coding

Et
he

rn
et

 fr
am

e
(IE

EE
80

2.
3)

: 6
4-

15
18

 B
yt

es
 (u

p
to

 15
22

 B
yt

es
 if

 V
LA

N
 is

 u
se

d)

Et
he

rn
et

 h
ea

de
r

Frame Check Sequence (FCS)

Working Counter

Padding

32 bit

16 bit

Length

Reserved

Type (0x01)

11 bit

1 bit

4 bitEt
he

rC
AT

 h
ea

de
r

Et
he

rn
et

 d
at

a

Et
he

rC
AT

 fr
am

e

D
at

ag
ra

m
 1

D
at

ag
ra

m
 h

ea
de

r
D

at
a

Command

Index

Address

Length

Reserved

Circulating

NEXT

IRQ

8 bit

8 bit

32 bit

11 bit

3 bit

1 bit

1 bit

16 bit

Destination MAC address

Source MAC address

EtherType (0x88A4) 16 bit

48 bit

48 bit

Datagram ex. 3:	 Process data exchange
	 (via SM2, SM3)

Datagram ex. 1:	 Read/write access to registers

Datagram ex. 2:	 Mailbox communication,
	 CoE SDO Service (via SM0, SM1)

Value read from / to be written to register

Value of process data n

…

Value of process data 2

Value of process data 1

D
at

a

Length of Mailbox Service Data

Size indicator

Priority

Complete Access

Address

Transfer type

Mailbox Type (e.g. CoE)

SDO Command Specificer (e.g. Upload)

Channel

Data block size of the object

Count

Object index

Reserved

Subindex

Complete size

Data of the object

1 bit

2 bit

1 bit

16 bit

16 bit

1 bit

4 bit

3 bit

6 bit

2 bit

3 bit

16 bit

1 bit

8 bit

D
at

a

M
ai

lb
ox

 S
er

vi
ce

 D
at

a
M

ai
lb

ox
 h

ea
de

r

D
at

a

Number

Reserved

SDO Service (e.g. Request, Response)

9 bit

3 bit

4 bitPr
ot

oc
ol

 h
ea

de
r

32 bit

D
at

ag
ra

m
 2

...

Datagram example 3: Process data exchange (FMMU)

In this example process data is exchanged cyclically using a Logical Read Write command (LRW)
and mapped by FMMUs to and from the SubDevice’s DPRAM (SM2/3).

y: FMMU number (0x0...0xF)

Re
fe

re
nc

e:
	

ET
G

.10
0

0
.4

 –
 F

ie
ld

bu
s m

em
or

y
m

an
ag

em
en

t u
ni

t

WKC+5

8 Byte data 4 Byte data WKC0x1.000.000

ADO0x1800 ADO0x1C00 ADO0x1800

0x1.000.0080x1.000.000

Outputs (8 Bytes)
Inputs (5 Bytes)

LRW

Configuration:

reg0x06y0:
reg0x06y4:
reg0x06y8:
reg0x06yB:

Log. start address
Length (Byte)
Phys. start address
Direction

µC

SubDevice 1

DPRAM

SM3
(5 Bytes)

SM2
(8 Bytes)

FMMU1

0x1000000
0x05

0x1C00
0x01 (read)

FMMU0

0x1000000
0x08

0x1800
0x02 (write)

ESC

µC

SubDevice n

DPRAM

SM2
(4 Bytes)

FMMU0

0x1000008
0x04

0x1800
0x02 (write)

ESC

µC

ESC

ESM
CoE

0x03
Process

data

Mailbox service (read, write)

EoE
0x02

AoE
0x01

FoE
0x04

SoE
0x05

 PDI (Physical Device Interface) SYNCx LATCHx

AL

DLL

PhL

SubDevice Information
Interface (SII; EEPROM)

DC unit

reg0x0900 ff.

SYNC/LATCH unit

DC control

Reference:	 ETG.2010 Reference:	 ETG.1000.3/4

Reference:	 ETG.1000.5/6

EtherCAT Processing Unit (EPU)

SM0 (Mailbox Out)reg0x0800 ff.

reg0x0600 ff.

SM1 (Mailbox In) SM2 (outputs) SM3 (inputs)

FMMU0 FMMU1

Auto-forwarder and loopback

Port 0 (in) Port 1 (out) Port 2 (out) Port 3 (out)

Process dataMailbox

Dual-ported RAM

ESC memory

Registers
0x0000 - 0x0FFF

Free Run: Application is triggered by local clock and runs independently
from EtherCAT cycle. ESI element Device:Dc is not available and
obj0x1C32/3 is optional if only Free Run is supported.

PDI

ES
C

μC

Local
Appl.

SM-Synchronous: Application is synchronized with the SM2 (SM3) event,
which is generated when process data is written to SM2 (read from SM3).
Events are mapped to global IRQ or polled from reg0x0220. ESI element
Device:Dc is not available if only SM-Synchronous is supported. If both,
SM-Synchronous and DC-Synchronous are supported, then it is indicated
in the ESI by Dc:AssignActivate = "#x0000"

Global IRQ

PDI

ES
C

μC

Local
Appl.

DC-Synchronous: Application is synchronized using DC-based interrupt
signals (SYNC0, SYNC1; ns-accuracy), generated by the SYNC/LATCH unit.
Among many other DC modes, the following two show basic concepts:

	� SYNC0: triggers the complete processing of the local cycle (see
Minimum Cycle Time)

	 SM2 and SYNC0 (even higher synchronization accuracy of the output
	 event): SM2 event triggers reading of output data from SM2, processing,
	� writing values to hardware drivers; then the SYNC0 event is used to

activate output drivers. ESI element Dc:AssignActivate = "#x0300" for
SYNC0 event generation

Global IRQ

PDI

ES
C

μC

Local
Appl.

SYNCx

Reference:	 ETG.1000.4 – Distributed clock

1.	� Propagation Delay: write to reg0x0900 latches receive times on all ports;
read latched times, calculate delays; write individual values to reg0x0928

2.	 Offset: read individual local times; calculate offset to time reference;
	 write individual offsets values to reg0x0920
3.	� Static Drift: read System Time from reference clock and write to

individual DC SubDevices via multiple (~15.000) xRMW datagrams
4.	 Continuous Drift: distribute System Time (xRMW) together with cyclic
	 frames, e.g. every ms to keep deviation of distributed times small

DC System Time setup (1-3) and continuous drift compensation (4)

ESC (ref. clock)

Appl.

reg0x0910 ff.
reg0x0990 ff.

MDEVICE

PLC

establishing common time base

syncronization of applications

xRMW
ESC

reg0x0910 ff.
reg0x0990 ff.

Appl.

ESC

reg0x0910 ff.
reg0x0990 ff.

Appl.

ESC

EPU

PO
RT

 0

PO
RT 1

PORT 3

PORT 2

Logical ringFrame structure

MDEVICE

Frame processing and forw. order

Specific port and error registers

Commands

EtherCAT commands address one or several SubDevices. Position
(APxx), Node (FPxx), Logical (Lxx), and Broadcast (Bxx) addressing
is possible. With each successfull read/write interaction every
SubDevice increments the Working Counter (WKC).

Working Counter

Re
fe

re
nc

e:
	

ET
G

.10
0

0
.4

 –
 E

th
er

CA
T

fr
am

e
st

ru
ct

ur
e

	
ET

G
.10

0
0

.4
 –

 E
rr

or
 d

et
ec

tio
n

ov
er

vi
ew

Frame

BOOT (reg0x0120/reg0x0130 = 0x3): optional

Et
he

rC
AT

 D
ev

ic
e

Pr
ot

oc
ol

 P
os

te
r

